Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
Sci Rep ; 14(1): 8393, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600134

Identifying factors linked to autism traits in the general population may improve our understanding of the mechanisms underlying divergent neurodevelopment. In this study we assess whether factors increasing the likelihood of childhood autism are related to early autistic trait emergence, or if other exposures are more important. We used data from 536 toddlers from London (UK), collected at birth (gestational age at birth, sex, maternal body mass index, age, parental education, parental language, parental history of neurodevelopmental conditions) and at 18 months (parents cohabiting, measures of socio-economic deprivation, measures of maternal parenting style, and a measure of maternal depression). Autism traits were assessed using the Quantitative Checklist for Autism in Toddlers (Q-CHAT) at 18 months. A multivariable model explained 20% of Q-CHAT variance, with four individually significant variables (two measures of parenting style and two measures of socio-economic deprivation). In order to address variable collinearity we used principal component analysis, finding that a component which was positively correlated with Q-CHAT was also correlated to measures of parenting style and socio-economic deprivation. Our results show that parenting style and socio-economic deprivation correlate with the emergence of autism traits at age 18 months as measured with the Q-CHAT in a community sample.


Autism Spectrum Disorder , Autistic Disorder , Infant, Newborn , Humans , Child, Preschool , Infant , Autistic Disorder/epidemiology , Parents , Educational Status , Parenting , Family Characteristics , Autism Spectrum Disorder/epidemiology
2.
Nat Commun ; 15(1): 16, 2024 02 08.
Article En | MEDLINE | ID: mdl-38331941

Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.


Autistic Disorder , Infant, Premature , Child, Preschool , Infant , Adult , Humans , Infant, Newborn , Brain/pathology , Brain Mapping , Magnetic Resonance Imaging
3.
Transl Psychiatry ; 13(1): 320, 2023 10 18.
Article En | MEDLINE | ID: mdl-37852957

Altered reactivity and responses to auditory input are core to the diagnosis of autism spectrum disorder (ASD). Preclinical models implicate ϒ-aminobutyric acid (GABA) in this process. However, the link between GABA and auditory processing in humans (with or without ASD) is largely correlational. As part of a study of potential biosignatures of GABA function in ASD to inform future clinical trials, we evaluated the role of GABA in auditory repetition suppression in 66 adults (n = 28 with ASD). Neurophysiological responses (temporal and frequency domains) to repetitive standard tones and novel deviants presented in an oddball paradigm were compared after double-blind, randomized administration of placebo, 15 or 30 mg of arbaclofen (STX209), a GABA type B (GABAB) receptor agonist. We first established that temporal mismatch negativity was comparable between participants with ASD and those with typical development (TD). Next, we showed that temporal and spectral responses to repetitive standards were suppressed relative to responses to deviants in the two groups, but suppression was significantly weaker in individuals with ASD at baseline. Arbaclofen reversed weaker suppression of spectral responses in ASD but disrupted suppression in TD. A post hoc analysis showed that arbaclofen-elicited shift in suppression was correlated with autistic symptomatology measured using the Autism Quotient across the entire group, though not in the smaller sample of the ASD and TD group when examined separately. Thus, our results confirm: GABAergic dysfunction contributes to the neurophysiology of auditory sensory processing alterations in ASD, and can be modulated by targeting GABAB activity. These GABA-dependent sensory differences may be upstream of more complex autistic phenotypes.


Autism Spectrum Disorder , Autistic Disorder , Adult , Humans , Auditory Perception/physiology , GABA-B Receptor Agonists/pharmacology , GABA-B Receptor Agonists/therapeutic use , gamma-Aminobutyric Acid
4.
Dev Cogn Neurosci ; 61: 101250, 2023 Jun.
Article En | MEDLINE | ID: mdl-37150083

Preterm birth results in premature exposure of the brain to the extrauterine environment during a critical period of neurodevelopment. Consequently, infants born preterm are at a heightened risk of adverse behavioural outcomes in later life. We characterise longitudinal development of neonatal regional brain volume and functional connectivity in the first weeks following preterm birth, sociodemographic factors, and their respective relationships to psychomotor outcomes and psychopathology in toddlerhood. We study 121 infants born preterm who underwent magnetic resonance imaging shortly after birth, at term-equivalent age, or both. Longitudinal regional brain volume and functional connectivity were modelled as a function of psychopathology and psychomotor outcomes at 18 months. Better psychomotor functioning in toddlerhood was associated with greater relative right cerebellar volume and a more rapid decrease over time of sensorimotor degree centrality in the neonatal period. In contrast, increased 18-month psychopathology was associated with a more rapid decrease in relative regional subcortical volume. Furthermore, while socio-economic deprivation was related to both psychopathology and psychomotor outcomes, cognitively stimulating parenting predicted psychopathology only. Our study highlights the importance of longitudinal imaging to better predict toddler outcomes following preterm birth, as well as disparate environmental influences on separable facets of behavioural development in this population.


Infant, Premature , Premature Birth , Female , Infant, Newborn , Infant , Humans , Premature Birth/pathology , Brain , Magnetic Resonance Imaging/methods , Demography
5.
Environ Int ; 174: 107921, 2023 04.
Article En | MEDLINE | ID: mdl-37058974

BACKGROUND: Prenatal exposure to air pollution is associated with adverse neurologic consequences in childhood. However, the relationship between in utero exposure to air pollution and neonatal brain development is unclear. METHODS: We modelled maternal exposure to nitrogen dioxide (NO2) and particulate matter (PM2.5 and PM10) at postcode level between date of conception to date of birth and studied the effect of prenatal air pollution exposure on neonatal brain morphology in 469 (207 male) healthy neonates, with gestational age of ≥36 weeks. Infants underwent MR neuroimaging at 3 Tesla at 41.29 (36.71-45.14) weeks post-menstrual age (PMA) as part of the developing human connectome project (dHCP). Single pollutant linear regression and canonical correlation analysis (CCA) were performed to assess the relationship between air pollution and brain morphology, adjusting for confounders and correcting for false discovery rate. RESULTS: Higher exposure to PM10 and lower exposure to NO2 was strongly canonically correlated to a larger relative ventricular volume, and moderately associated with larger relative size of the cerebellum. Modest associations were detected with higher exposure to PM10 and lower exposure to NO2 and smaller relative cortical grey matter and amygdala and hippocampus, and larger relaive brainstem and extracerebral CSF volume. No associations were found with white matter or deep grey nuclei volume. CONCLUSIONS: Our findings show that prenatal exposure to air pollution is associated with altered brain morphometry in the neonatal period, albeit with opposing results for NO2 and PM10. This finding provides further evidence that reducing levels of maternal exposure to particulate matter during pregnancy should be a public health priority and highlights the importance of understanding the impacts of air pollution on this critical development window.


Air Pollution , Brain , Maternal Exposure , Female , Humans , Infant , Infant, Newborn , Male , Pregnancy , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/statistics & numerical data , Brain/growth & development , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Prenatal Exposure Delayed Effects/chemically induced , Maternal Exposure/statistics & numerical data
6.
Transl Psychiatry ; 13(1): 108, 2023 04 03.
Article En | MEDLINE | ID: mdl-37012252

Very preterm birth (VPT; ≤32 weeks' gestation) is associated with altered brain development and cognitive and behavioral difficulties across the lifespan. However, heterogeneity in outcomes among individuals born VPT makes it challenging to identify those most vulnerable to neurodevelopmental sequelae. Here, we aimed to stratify VPT children into distinct behavioral subgroups and explore between-subgroup differences in neonatal brain structure and function. 198 VPT children (98 females) previously enrolled in the Evaluation of Preterm Imaging Study (EudraCT 2009-011602-42) underwent Magnetic Resonance Imaging at term-equivalent age and neuropsychological assessments at 4-7 years. Using an integrative clustering approach, we combined neonatal socio-demographic, clinical factors and childhood socio-emotional and executive function outcomes, to identify distinct subgroups of children based on their similarity profiles in a multidimensional space. We characterized resultant subgroups using domain-specific outcomes (temperament, psychopathology, IQ and cognitively stimulating home environment) and explored between-subgroup differences in neonatal brain volumes (voxel-wise Tensor-Based-Morphometry), functional connectivity (voxel-wise degree centrality) and structural connectivity (Tract-Based-Spatial-Statistics). Results showed two- and three-cluster data-driven solutions. The two-cluster solution comprised a 'resilient' subgroup (lower psychopathology and higher IQ, executive function and socio-emotional scores) and an 'at-risk' subgroup (poorer behavioral and cognitive outcomes). No neuroimaging differences between the resilient and at-risk subgroups were found. The three-cluster solution showed an additional third 'intermediate' subgroup, displaying behavioral and cognitive outcomes intermediate between the resilient and at-risk subgroups. The resilient subgroup had the most cognitively stimulating home environment and the at-risk subgroup showed the highest neonatal clinical risk, while the intermediate subgroup showed the lowest clinical, but the highest socio-demographic risk. Compared to the intermediate subgroup, the resilient subgroup displayed larger neonatal insular and orbitofrontal volumes and stronger orbitofrontal functional connectivity, while the at-risk group showed widespread white matter microstructural alterations. These findings suggest that risk stratification following VPT birth is feasible and could be used translationally to guide personalized interventions aimed at promoting children's resilience.


Infant, Extremely Premature , Premature Birth , Female , Humans , Infant, Newborn , Child , Premature Birth/diagnostic imaging , Premature Birth/pathology , Brain/pathology , Magnetic Resonance Imaging/methods , Gestational Age
7.
Cereb Cortex ; 33(9): 5585-5596, 2023 04 25.
Article En | MEDLINE | ID: mdl-36408638

Formation of the functional connectome in early life underpins future learning and behavior. However, our understanding of how the functional organization of brain regions into interconnected hubs (centrality) matures in the early postnatal period is limited, especially in response to factors associated with adverse neurodevelopmental outcomes such as preterm birth. We characterized voxel-wise functional centrality (weighted degree) in 366 neonates from the Developing Human Connectome Project. We tested the hypothesis that functional centrality matures with age at scan in term-born babies and is disrupted by preterm birth. Finally, we asked whether neonatal functional centrality predicts general neurodevelopmental outcomes at 18 months. We report an age-related increase in functional centrality predominantly within visual regions and a decrease within the motor and auditory regions in term-born infants. Preterm-born infants scanned at term equivalent age had higher functional centrality predominantly within visual regions and lower measures in motor regions. Functional centrality was not related to outcome at 18 months old. Thus, preterm birth appears to affect functional centrality in regions undergoing substantial development during the perinatal period. Our work raises the question of whether these alterations are adaptive or disruptive and whether they predict neurodevelopmental characteristics that are more subtle or emerge later in life.


Connectome , Premature Birth , Infant , Pregnancy , Female , Infant, Newborn , Humans , Magnetic Resonance Imaging , Brain , Infant, Premature
8.
J Neuroinflammation ; 19(1): 265, 2022 Oct 29.
Article En | MEDLINE | ID: mdl-36309753

Encephalopathy of prematurity (EoP) affects approximately 30% of infants born < 32 weeks gestation and is highly associated with inflammation in the foetus. Here we evaluated the efficacy of montelukast, a cysteinyl leukotriene receptor antagonist widely used to treat asthma in children, to ameliorate peripheral and central inflammation, and subsequent grey matter neuropathology and behaviour deficits in a mouse model of EoP. Male CD-1 mice were treated with intraperitoneal (i.p.) saline or interleukin-1beta (IL-1ß, 40 µg/kg, 5 µL/g body weight) from postnatal day (P)1-5 ± concomitant montelukast (1-30 mg/kg). Saline or montelukast treatment was continued for a further 5 days post-injury. Assessment of systemic and central inflammation and short-term neuropathology was performed from 4 h following treatment through to P10. Behavioural testing, MRI and neuropathological assessments were made on a second cohort of animals from P36 to 54. Montelukast was found to attenuate both peripheral and central inflammation, reducing the expression of pro-inflammatory molecules (IL-1ß, IL-6, TNF) in the brain. Inflammation induced a reduction in parvalbumin-positive interneuron density in the cortex, which was normalised with high-dose montelukast. The lowest effective dose, 3 mg/kg, was able to improve anxiety and spatial learning deficits in this model of inflammatory injury, and alterations in cortical mean diffusivity were not present in animals that received this dose of montelukast. Repurposed montelukast administered early after preterm birth may, therefore, improve grey matter development and outcome in EoP.


Brain Diseases , Premature Birth , Quinolines , Infant, Newborn , Humans , Female , Male , Animals , Mice , Gray Matter , Premature Birth/drug therapy , Acetates/therapeutic use , Acetates/pharmacology , Quinolines/therapeutic use , Quinolines/pharmacology , Disease Models, Animal , Inflammation/drug therapy
9.
J Autism Dev Disord ; 2022 Oct 23.
Article En | MEDLINE | ID: mdl-36273367

Very preterm (VPT; < 33 weeks' gestation) toddlers screening positively for autism spectrum conditions (ASC) may display heterogenous neurodevelopmental trajectories. Here we studied neonatal brain volumes and childhood ASC traits evaluated with the Social Responsiveness Scale (SRS-2) in VPT-born toddlers (N = 371; median age 20.17 months) sub-divided into three groups based on their Modified-Checklist for Autism in Toddlers scores. These were: those screening positively failing at least 2 critical items (critical-positive); failing any 3 items, but less than 2 critical items (non-critical-positive); and screening negatively. Critical-positive scorers had smaller neonatal cerebellar volumes compared to non-critical-positive and negative scorers. However, both positive screening groups exhibited higher childhood ASC traits compared to the negative screening group, suggesting distinct aetiological trajectories associated with ASC outcomes.

10.
Transl Psychiatry ; 12(1): 323, 2022 08 09.
Article En | MEDLINE | ID: mdl-35945202

Maternal prenatal depression is associated with increased likelihood of neurodevelopmental and psychiatric conditions in offspring. The relationship between maternal depression and offspring outcome may be mediated by in-utero changes in brain development. Recent advances in magnetic resonance imaging (MRI) have enabled in vivo investigations of neonatal brains, minimising the effect of postnatal influences. The aim of this study was to examine associations between maternal prenatal depressive symptoms, infant white matter, and toddler behaviour. 413 mother-infant dyads enrolled in the developing Human Connectome Project. Mothers completed the Edinburgh Postnatal Depression Scale (median = 5, range = 0-28, n = 52 scores ≥ 11). Infants (n = 223 male) (median gestational age at birth = 40 weeks, range 32.14-42.29) underwent MRI (median postmenstrual age at scan = 41.29 weeks, range 36.57-44.71). Fixel-based fibre metrics (mean fibre density, fibre cross-section, and fibre density modulated by cross-section) were calculated from diffusion imaging data in the left and right uncinate fasciculi and cingulum bundle. For n = 311, internalising and externalising behaviour, and social-emotional abilities were reported at a median corrected age of 18 months (range 17-24). Statistical analysis used multiple linear regression and mediation analysis with bootstrapping. Maternal depressive symptoms were positively associated with infant fibre density in the left (B = 0.0005, p = 0.003, q = 0.027) and right (B = 0.0006, p = 0.003, q = 0.027) uncinate fasciculus, with left uncinate fasciculus fibre density, in turn, positively associated with social-emotional abilities in toddlerhood (B = 105.70, p = 0.0007, q = 0.004). In a mediation analysis, higher maternal depressive symptoms predicted toddler social-emotional difficulties (B = 0.342, t(307) = 3.003, p = 0.003), but this relationship was not mediated by fibre density in the left uncinate fasciculus (Sobel test p = 0.143, bootstrapped indirect effect = 0.035, SE = 0.02, 95% CI: [-0.01, 0.08]). There was no evidence of an association between maternal depressive and cingulum fibre properties. These findings suggest that maternal perinatal depressive symptoms are associated with neonatal uncinate fasciculi microstructure, but not fibre bundle size, and toddler behaviour.


Prenatal Exposure Delayed Effects , White Matter , Brain/pathology , Child, Preschool , Depression/diagnostic imaging , Female , Humans , Infant , Infant, Newborn , Male , Mothers/psychology , Pregnancy , Prenatal Exposure Delayed Effects/pathology , White Matter/pathology
11.
Neuroimage Clin ; 36: 103153, 2022.
Article En | MEDLINE | ID: mdl-35987179

Children with Congenital Heart Disease (CHD) are at increased risk of neurodevelopmental impairments. The neonatal antecedents of impaired behavioural development are unknown. 43 infants with CHD underwent presurgical brain diffusion-weighted MRI [postmenstrual age at scan median (IQR) = 39.29 (38.71-39.71) weeks] and a follow-up assessment at median age of 22.1 (IQR 22.0-22.7) months in which parents reported internalizing and externalizing problem scores on the Child Behaviour Checklist. We constructed structural brain networks from diffusion-weighted MRI and calculated edge-wise structural connectivity as well as global and local brain network features. We also calculated presurgical cerebral oxygen delivery, and extracted perioperative variables, socioeconomic status at birth and a measure of cognitively stimulating parenting. Lower degree in the right inferior frontal gyrus (partial ρ = -0.687, p < 0.001) and reduced connectivity in a frontal-limbic sub-network including the right inferior frontal gyrus were associated with higher externalizing problem scores. Externalizing problem scores were unrelated to neonatal clinical course or home environment. However, higher internalizing problem scores were associated with earlier surgery in the neonatal period (partial ρ = -0.538, p = 0.014). Our results highlight the importance of frontal-limbic networks to the development of externalizing behaviours and provide new insights into early antecedents of behavioural impairments in CHD.


Brain , Heart Defects, Congenital , Infant , Infant, Newborn , Humans , Child , Heart Defects, Congenital/diagnostic imaging , Child Behavior , Prefrontal Cortex , Diffusion Magnetic Resonance Imaging
12.
Dev Cogn Neurosci ; 55: 101117, 2022 06.
Article En | MEDLINE | ID: mdl-35662682

In the mature brain, structural and functional 'fingerprints' of brain connectivity can be used to identify the uniqueness of an individual. However, whether the characteristics that make a given brain distinguishable from others already exist at birth remains unknown. Here, we used neuroimaging data from the developing Human Connectome Project (dHCP) of preterm born neonates who were scanned twice during the perinatal period to assess the developing brain fingerprint. We found that 62% of the participants could be identified based on the congruence of the later structural connectome to the initial connectivity matrix derived from the earlier timepoint. In contrast, similarity between functional connectomes of the same subject at different time points was low. Only 10% of the participants showed greater self-similarity in comparison to self-to-other-similarity for the functional connectome. These results suggest that structural connectivity is more stable in early life and can represent a potential connectome fingerprint of the individual: a relatively stable structural connectome appears to support a changing functional connectome at a time when neonates must rapidly acquire new skills to adapt to their new environment.


Connectome , Brain , Connectome/methods , Humans , Infant, Newborn , Magnetic Resonance Imaging
13.
Front Neurosci ; 16: 886772, 2022.
Article En | MEDLINE | ID: mdl-35677357

The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed.

14.
Neuroimage ; 257: 119319, 2022 08 15.
Article En | MEDLINE | ID: mdl-35589001

The development of perinatal brain connectivity underpins motor, cognitive and behavioural abilities in later life. Diffusion MRI allows the characterisation of subtle inter-individual differences in structural brain connectivity. Individual brain connectivity maps (connectomes) are by nature high in dimensionality and complex to interpret. Machine learning methods are a powerful tool to uncover properties of the connectome which are not readily visible and can give us clues as to how and why individual developmental trajectories differ. In this manuscript we used Deep Neural Networks and Random Forests to predict demographic and neurodevelopmental characteristics from neonatal structural connectomes in a large sample of babies (n = 524) from the developing Human Connectome Project. We achieved an accurate prediction of post menstrual age (PMA) at scan in term-born infants (mean absolute error (MAE) = 0.72 weeks, r = 0.83 and p < 0.001). We also achieved good accuracy when predicting gestational age at birth in a cohort of term and preterm babies scanned at term equivalent age (MAE = 2.21 weeks, r = 0.82, p < 0.001). We subsequently used sensitivity analysis to obtain feature relevance from our prediction models, with the most important connections for prediction of PMA and GA found to predominantly involve frontal and temporal regions, thalami, and basal ganglia. From our models of PMA at scan for infants born at term, we computed a brain maturation index (predicted age minus actual age) of individual preterm neonates and found a significant correlation between this index and motor outcome at 18 months corrected age. Our results demonstrate the applicability of machine learning techniques in analyses of the neonatal connectome and suggest that a neural substrate of brain maturation with implications for future neurodevelopment is detectable at term equivalent age from the neonatal connectome.


Connectome , Brain/diagnostic imaging , Connectome/methods , Diffusion Magnetic Resonance Imaging , Female , Gestational Age , Humans , Infant , Infant, Newborn , Infant, Premature , Magnetic Resonance Imaging , Pregnancy
15.
Dev Cogn Neurosci ; 54: 101103, 2022 04.
Article En | MEDLINE | ID: mdl-35364447

Developmental delays in infanthood often persist, turning into life-long difficulties, and coming at great cost for the individual and community. By examining the developing brain and its relation to developmental outcomes we can start to elucidate how the emergence of brain circuits is manifested in variability of infant motor, cognitive and behavioural capacities. In this study, we examined if cortical structural covariance at birth, indexing coordinated development, is related to later infant behaviour. We included 193 healthy term-born infants from the Developing Human Connectome Project (dHCP). An individual cortical connectivity matrix derived from morphological and microstructural features was computed for each subject (morphometric similarity networks, MSNs) and was used as input for the prediction of behavioural scores at 18 months using Connectome-Based Predictive Modeling (CPM). Neonatal MSNs successfully predicted social-emotional performance. Predictive edges were distributed between and within known functional cortical divisions with a specific important role for primary and posterior cortical regions. These results reveal that multi-modal neonatal cortical profiles showing coordinated maturation are related to developmental outcomes and that network organization at birth provides an early infrastructure for future functional skills.


Connectome , Magnetic Resonance Imaging , Brain , Connectome/methods , Humans , Infant , Infant Behavior , Infant, Newborn
16.
Hum Brain Mapp ; 43(5): 1577-1589, 2022 04 01.
Article En | MEDLINE | ID: mdl-34897872

Infants born in early term (37-38 weeks gestation) experience slower neurodevelopment than those born at full term (40-41 weeks gestation). While this could be due to higher perinatal morbidity, gestational age at birth may also have a direct effect on the brain. Here we characterise brain volume and white matter correlates of gestational age at birth in healthy term-born neonates and their relationship to later neurodevelopmental outcome using T2 and diffusion weighted MRI acquired in the neonatal period from a cohort (n = 454) of healthy babies born at term age (>37 weeks gestation) and scanned between 1 and 41 days after birth. Images were analysed using tensor-based morphometry and tract-based spatial statistics. Neurodevelopment was assessed at age 18 months using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Infants born earlier had higher relative ventricular volume and lower relative brain volume in the deep grey matter, cerebellum and brainstem. Earlier birth was also associated with lower fractional anisotropy, higher mean, axial, and radial diffusivity in major white matter tracts. Gestational age at birth was positively associated with all Bayley-III subscales at age 18 months. Regression models predicting outcome from gestational age at birth were significantly improved after adding neuroimaging features associated with gestational age at birth. This work adds to the body of evidence of the impact of early term birth and highlights the importance of considering the effect of gestational age at birth in future neuroimaging studies including term-born babies.


Diffusion Tensor Imaging , White Matter , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Female , Gestational Age , Humans , Infant , Infant, Newborn , Infant, Premature , Pregnancy , White Matter/diagnostic imaging
17.
Biol Psychiatry Glob Open Sci ; 1(2): 146-155, 2021 Aug.
Article En | MEDLINE | ID: mdl-34471914

BACKGROUND: Very preterm birth is associated with an increased risk of childhood psychopathology and cognitive deficits. However, the extent to which these developmental problems associated with preterm birth are amenable to environmental factors or determined by neurobiology at birth remains unclear. METHODS: We derived neonatal brain structural covariance networks using non-negative matrix factorization in 384 very preterm infants (median gestational age [range], 30.29 [23.57-32.86] weeks) who underwent magnetic resonance imaging at term-equivalent age (median postmenstrual age, 42.57 [37.86-44.86] weeks). Principal component analysis was performed on 32 behavioral and cognitive measures assessed at preschool age (n = 206; median age, 4.65 [4.19-7.17] years) to identify components of childhood psychopathology and cognition. The Cognitively Stimulating Parenting Scale assessed the level of cognitively stimulating experiences available to the child at home. RESULTS: Cognitively stimulating parenting was associated with reduced expression of a component reflecting developmental psychopathology and executive dysfunction consistent with the preterm phenotype (inattention-hyperactivity, autism spectrum behaviors, and lower executive function scores). In contrast, a component reflecting better general cognitive abilities was associated with larger neonatal gray matter volume in regions centered on key nodes of the salience network, but not with cognitively stimulating parenting. CONCLUSIONS: Our results suggest that while neonatal brain structure likely influences cognitive abilities in very preterm children, the severity of behavioral symptoms that are typically observed in these children is sensitive to a cognitively stimulating home environment. Very preterm children may derive meaningful mental health benefits from access to cognitively stimulating experiences during childhood.

18.
Neuroimage ; 243: 118488, 2021 11.
Article En | MEDLINE | ID: mdl-34419595

INTRODUCTION: The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. METHODS: We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. RESULTS: In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. CONCLUSION: We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.


Cerebral Cortex/growth & development , Infant, Premature/growth & development , Magnetic Resonance Imaging/methods , Premature Birth/diagnostic imaging , Anisotropy , Brain/growth & development , Brain Cortical Thickness , Female , Gestational Age , Humans , Infant , Infant, Newborn , Male , Pregnancy , Pregnancy Trimester, Third
19.
J Pediatr ; 238: 135-144.e10, 2021 Nov.
Article En | MEDLINE | ID: mdl-34245768

OBJECTIVES: To evaluate whether intrauterine growth restriction (IUGR) adds further neurodevelopmental risk to that posed by very preterm birth alone in terms of alterations in brain growth and poorer toddlerhood outcomes. STUDY DESIGN: Participants were 314 infants of very preterm birth enrolled in the Evaluation of Preterm Imaging Study (e-Prime) who were subsequently followed up in toddlerhood. IUGR was identified postnatally from discharge records (n = 49) and defined according to prenatal evaluation of growth restriction confirmed by birth weight <10th percentile for gestational age and/or alterations in fetal Doppler. Appropriate for gestational age (AGA; n = 265) was defined as birth weight >10th percentile for gestational age at delivery. Infants underwent magnetic resonance imaging at term-equivalent age (median = 42 weeks); T2-weighted images were obtained for voxelwise gray matter volumes. Follow-up assessments were conducted at corrected median age of 22 months using the Bayley Scales of Infant and Toddler Development III and the Modified-Checklist for Autism in Toddlers. RESULTS: Infants of very preterm birth with IUGR displayed a relative volumetric decrease in gray matter in limbic regions and a relative increase in frontoinsular, temporal-parietal, and frontal areas compared with peers of very preterm birth who were AGA. At follow-up, toddlers born very preterm with IUGR had significantly lower cognitive (effect size = 0.42) and motor (effect size = 0.41) scores and were more likely to have a positive Modified-Checklist for Autism in Toddlers screening for autism (OR = 2.12) compared with peers of very preterm birth who were AGA. CONCLUSIONS: IUGR might confer a neurodevelopmental risk that is greater than that posed by very preterm alone, in terms of both alterations in brain growth and poorer toddlerhood outcomes.


Autism Spectrum Disorder/diagnosis , Brain/pathology , Fetal Growth Retardation/diagnostic imaging , Adult , Brain/diagnostic imaging , Female , Fetal Growth Retardation/pathology , Humans , Infant , Infant, Extremely Premature , Infant, Newborn , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Pregnancy
...